Apr03

Das Gebiet, um welches es im heutigen Beitrag geht, befindet sich küstennah im Süden von Kenia unweit der tansanischen Grenze. Seit den ersten Schürfungen und geologisch/geochemischen Untersuchungen in den 1930-er Jahren bis zum bevorstehenden Abbau, der trotz politischem Seilziehen auf internationaler und grossem Widerstand auf nationaler Ebene in den kommenden Jahren umgesetzt werden wird, sind über 80 Jahre vergangen. Die Niob-Seltene Erden Lagerstätte wird heute mit über 100 Millionen Tonnen veranschlagt bei einem zur Zeit geschätzten Wert von über 100 Milliarden USD. Sie ist weltweit eine der grössten Niob-Reserven mit einer mittleren Anreicherung von 0,65 % Niob-Pentoxid, Nb2O5, die in angereicherten Zonen bis zu 3 % ansteigt. Niob-Pentoxid ist ein farbloses, nicht lösliches Pulver, das durch Hydrolyse und anschliessender Reaktion mit Sauerstoff entsteht.

Im SE von Kenia ragt Mrima Hill 230 m über einer von Quartär-Sedimenten bedeckten Ebene © PAW

Im SE von Kenia ragt Mrima Hill 230 m über einer von Quartär-Sedimenten bedeckten Ebene © PAW

Lokalisation Mrima Hill

Lokalisation Mrima Hill

Lokalisation Mrima Hill

Lokalisation Mrima Hill

Da Mrima Hill ein durch Grabenbruch-Vulkanismus entstandener, verwitterter Karbonatit ist, sind auch bedeutende Mengen der Seltenen Erden vorhanden, die bis zu 5 % angereichert sind. Auch die Seltenen Erden zählen wie Niob zu den begehrten strategischen Metallen unserer hochtechnisierten Gesellschaft. Siehe:

→ Wirtschaftsgeologie, ein Fachgebiet mit polit. Auswirkung
Strategisch wichtige Metalle: Niob, Tantal und die Seltenen Erden
Seltene Erden: Treibstoff der Moderne, Öl der Zukunft?
Am Anfang steht das Gestein

Ein Karbonatit ist immer auch Teil eines grösseren alkalischen Eruptiv- oder Intrusiv-Komplexes. Der Jombo Hill Komplex, unweit vom Mrima Hill entfernt, repräsentiert die frühkristalline Phase dieser intrusiven, alkalinen Magmafolge. Der Karbonatit selbst drang in mesozoische Sandsteine ​​ein und weist heute eine bis 100 m mächtige Verwitterungsschicht auf. Ein bedeutender Effekt der Verwitterung war die Entfernung von Calcit und anderen Carbonaten, die das Volumen des ursprünglichen Karbonatits auf 20 % reduzierte, was zu einer entsprechenden Konzentration witterungsresistenter Begleitminerale, einschliesslich Pyrochlor, geführt hat.

Pyrochlor ist ein Niob-haltiges Mineral aus der Mineralklasse der Oxide und Hydroxide mit der idealisierten chemischen Zusammensetzung Ca2Nb2O7. Durch Substitution lassen sich zahlreiche weitere Elemente in die Kristallstruktur einfügen. So können grosse Mengen an Seltenen Erden, Uran und Thorium eingebaut werden.

Pyrochlor: Mt Malosa, Zomba District, Malawi © Christian Rewitzer, CC BY-SA 3.0

Pyrochlor: Mt Malosa, Zomba District, Malawi © Christian Rewitzer, CC BY-SA 3.0

Mrima Hill – ein heiliger Kaya Wald

Gegen die Ausbeutung der Mineralien regt sich Widerstand, einerseits aus Umweltaspekten aufgrund der hohen in den Mineralen gebunden Radioaktivität, und weil ursprünglicher Küstenwald vernichtet würde.

Andererseits kämpft die angestammte Bevölkerung der Küste Gegen die Zerstörung eines Kulturerbes. Sie verwalten bis heute mit grossem Erfolg eines der merkwürdigsten Welterbestätten: die Überreste  befestigter Dörfer, die von den Mijikenda als heilige Stätten ihrer Vorfahren verehrt werden.

Diese bewaldeten Stätten stammen aus dem 16. Jahrhundert, als eine Migration pastoraler Gemeinschaften aus dem heutigen Somalia zur Entstehung mehrerer Dörfer führte, die rund 200 km durch die tief liegenden Hügel der Provinz führen.

Nachdem sie Jahrhunderte lang gediehen waren und ihre eigene Sprache und Bräuche entwickelt hatten, begannen die Kayas um das frühe 20. Jahrhundert herum zu zerfallen. Heute, obwohl unbewohnt, werden die Kayas weiterhin als Aufbewahrungsorte für alte Glaubensvorstellungen und Praktiken verehrt. Dank der sorgfältigen Pflege durch die Mijikenda-Leute sind die Haine und Gräber in den Kayas als Reste eines ehemaligen Küstenwaldes erhalten geblieben.

Während Immobilienentwickler und Ressourcenforscher diese uralten ökologischen und kulturellen Hotspots ins Visier nehmen, machen sich die Einheimischen auf den Weg zu einer Auseinandersetzung mit dem, was die Weltbank als eine der am schnellsten wachsenden Volkswirtschaften in Subsahara-Afrika bezeichnet.

Kommentar schreiben/lesen

Mrz27

Niobe, die Tochter des Tantalos und der Dione, ist Namengeberin eines in der Natur sehr selten vorkommenden Schwermetalls, dem chemischen Element Niob (Nb). Das selbe gilt für Tantal (Ta), das nach Tantalos, dem grossen Frevler gegen den Olymp, benannt wurde. Sie zählen zu den Übergangsmetallen und werden zusammen mit Vanadium und Dubnium wegen ähnlich chemischen Eigenschaften der 5. Gruppe des Periodensystems bzw. der Vanadiumgruppe zugeordnet.

Periodensystem der Elemente, der graue Pfeil zeigt auf die 5. Gruppe, die Vanadiumgruppe

Periodensystem der Elemente, der graue Pfeil zeigt auf die 5. Gruppe, die Vanadiumgruppe

Niob besitzt eine graue Farbe und wird hauptsächlich zur Herstellung von Spezialstählen verwendet. Es kommt in verschiedenen supraleitenden Legierungen vor und wird zudem in der Schweisstechnik, in der Nuklearindustrie, der Elektronik, Optik, Numismatik und im Schmuck verwendet, denn es ist gut schmiedbar.

Tantal ist grauglänzend, sehr hart und dehnbar und besitzt sehr hohe Schmelz- und Siedepunkte, die bei 2’996 °C bzw. 6’100 °C liegen. Tantal ist wegen seiner Oxidschicht gegen chemische Angriffe widerstandsfähig. Zum Einsatz kommt es in der Elektrotechnik, der Chemie, im Hochtemperaturofenbau, im Flugzeug- und Raketenbau, in der Kerntechnik und in Verdampfungsanlagen. Rost- und säurebeständigen Stählen wird Tantal als Legierungsbestandteil zugesetzt. Weil Tantal keine toxische Wirkung hat, wird es in chirurgischen Implantaten verwendet. Aufgrund seiner Formbarkeit bei gleichzeitig hoher Dichte setzt man es auch zur Herstellung panzerbrechender Munition ein.

Seltene Erden Elemente (SEE)

Zu den Metallen der Seltenen Erden (SEE / en. REE) gehören die Elemente der 3. Nebengruppe des Periodensystems, also Scandium (Sc), Yttrium (Y)  und die Lanthanoide (La bis Lu). Scandium und Yttrium kommen in den gleichen Erzlagerstätten wie die Lanthanoiden vor und haben ähnliche chemische Eigenschaften wie diese.

Die Seltenen Erden reichen in der Kruste von Ce, dem häufigsten bei 60 ppm, das häufiger vorhanden ist als Nickel, bis zu Thulium und Lutetium, die mit etwa 0,5 ppm sehr selten sind.

Die Seltenen Erden Metalle werden in einer Vielzahl moderner Technologien mit Anwendungen in den Bereichen Militär, Medizin, Wissenschaft, Luft- und Raumfahrt und Verbraucher sowie im zunehmend wichtigen “grünen” Sektor verwendet. Für viele ihrer Anwendungen ist derzeit kein geeigneter Ersatz bekannt. Die Verwendung von Seltenen Erden als Magneten in Elektromotoren wird wahrscheinlich der Hauptantrieb für das Wachstum der gesamten SEE-Industrie sein, und diese Verwendung zusammen mit Leuchtstoffen wird bald mehr als 65 % der verbrauchten SEE-Oxide (nach Wert) ausmachen. Die Hauptnutzungen von Seltenen Erden Elementen sind Magnete und Leuchtstoffe.

Magnete

Magnete mit SEE Legierungen  sind sehr starke Permanentmagnete, die aufgrund ihres geringen Gewichts im Vergleich zur magnetischen Stärke in der Automobil- und Windkraft-Industrie besonders nützlich sind. Darüber hinaus werden diese Magnete auch in Computer-Festplattenlaufwerken sowie in Mobiltelefonen verwendet. Die wichtigsten SEE, die in Magneten verwendet werden, sind Neodym, Praseodym und Dysprosium.

Leuchtstoffe

Eine traditionelle Verwendung von SEE besteht in der Bereitstellung von Farbleuchtstoffen in Fernsehgeräten und neuerdings in Kathodenstrahlröhren, Plasmabildschirmen und Flüssigkristallanzeigen, wobei Europium, Terbium und Yttrium in der Lage sind, rotes, grünes bzw. weisses Licht zu emittieren.

Kommentar schreiben/lesen

Mrz20

Die moderne Wirtschaftsgeologie auf englisch “Economic Geology” beschäftigt sich hauptsächlich mit Themen der Prospektion und der Bewertung und Vermarktung von Bodenschätzen. Darunter fällt alles, was industriell genutzt wird, sei es zur Produktion von Energie oder Gütern jeglicher Art. Es gibt heute KEIN Produktionsgebiet bzw. Produkt, welches nicht in irgend einer Form Anteile aus Lagerstätten verwenden würde, z. B. der Dünger in der Landwirtschaft, die Stahlindustrie, die Rüstungsindustrie, die Automobilindustrie, die Telekommunikation, der Strassenbau usw., usw.

Es ist deshalb eine Herausforderung, Materialien, die auf endlichen Rohstoffen basieren, möglichst effizient zu nutzen. Dies beginnt bei der Optimierung des Abbaus von Ressourcen. Es setzt Kenntnisse geologischer Rahmenbedingungen voraus, unter denen mineralische und fossile Rohstoffe im Laufe der Erdgeschichte gebildet wurden bzw. sich bilden. Darauf aufbauend werden Explorationsstrategien für das Auffinden neuer Lagerstätten entwickelt. Des Weiteren bildet die wirtschaftsgeologische Analyse regionaler und globaler Verteilung geologischer Ressourcen bzw. Rohstoffe die Grundlage für Prognosen zur zukünftigen Verfügbarkeit für die Industrie und die Gesellschaft.

Kohleförderung im Tagebau © Stephen Codrington, CC BY 2.5

Kohleförderung im Tagebau © Stephen Codrington, CC BY 2.5

Die Wirtschaftsgeologie ist sehr praxisorientiert und ihre Fragestellungen sind grundlegend geologischer Art. Hinzu kommen noch technische, wirtschaftliche, soziale, ökologische und entwicklungspolitische Fragen. Unter zunehmendem Druck der schnell schwindenden Land- und Wasserressourcen sieht man vor allem in den hoch entwickelten industrialisierten Ländern eine stetige Verlagerung zur Gewinnung von Rohstoffen aus Abfallprodukten. Es sei hier auf die Kerichtverbrennungsanlage in Hinwil verwiesen, wo man mit grossem Erfolg im Thermo-Recylcling Verfahren jedes Jahr aus 100’000 Tonnen Schlacke 60 kg Gold, 1500 kg Silber, 800 Tonnen Kupfer und Kupferlegierungen, 3800 Tonnen Aluminium und 10’000 Tonnen Eisen zurückgewinnt.  Der Kupfergehalt der Feinschlacke ist mindestens so hoch wie im Erz einer Kupfermine und pro Tonne Feinschlacke lässt sich genau so viel Gold herausholen wie aus einer Tonne Erz aus einer guten Goldmine in Südafrika. Das Recyclen von Stoffen ist natürlich wesentlich ökologischer, als neues Kupfer zu gewinnen oder Gold zu schürfen.

Strategische Rohstoffe (Metalle, Halbmetalle & Seltene Erden)

Dies ist ein Begriff aus der Finanzwelt bzw. aus der Politik und bedeutet, dass diese sowohl für die Produktionsländer als Exportgut als auch für die verarbeitenden Länder strategische Bedeutung haben. Wenn man sich die Herkunftsländer einiger Rohstoffe anschaut, erkennt man, dass viele dieser Länder in unsicheren politischen Verhältnissen wie z. B. Afrika stecken. Zudem werden einige dieser Rohstoffe künftig knapp. Dies hängt einerseits mit ihrer Förderung zusammen, da sie oft als Begleitmetalle von der Förderung anderer Metalle abhängen und andererseits vom Produktionsland, das immer häufiger unter Chinas Führung steht und den freien Handel zu kontrollieren bzw. manipulieren beginnt. Antimon ist ein gutes Beispiel für politischen Einfluss auf strategische Metalle. 2013 beschloss die Regierung in Peking, keine Exporte mehr zu erlauben. Das führte dazu, dass in Europa für Antimon fast jeder Preis bezahlt wurde. Bei strategischen Metallen und Halbmetallen sind geopolitische Risiken besonders hoch. Ein weiteres Beispiel sind die Seltenen Erden.

Zusammengefasst sind strategische Rohstoffe also keine Metalle oder Elemente die einer chemischen-physikalischen Gruppe oder einer Gruppe des Periodensystems angehören müssen, ausgenommen die Seltenen Erden, sondern es sind Metalle, die für die Produktion bestimmter Produkte benötigt werden. Zu den strategischen Rohstoffen gehören 29 Elemente wie beispielsweise Chrom, Kobalt, Molybdän, Antimon, Vanadium, Tellurium, Iridium, die Seltene Erden usw..

3 Kommentare »



Die Lösung

Archiv