Feb28

Ein Geologe, der im Freien arbeitet, verwendet typischerweise einen Geologenkompass, eine Lupe und einen Geologenhammer. Wie steht es jedoch im Labor?

Seit dem ausgehenden 19. Jahrhundert wird das Lichtmikroskop in den geologischen Wissenschaften eingesetzt. Mit einem Mikroskop können Objekte unter einem grösseren Sehwinkel betrachtet werden, als dies mit blossem Auge oder einer Lupe der Fall wäre. So werden feinkörnige Substanzen zur optischen Untersuchung auf Glasobjektträgern in Flüssigkeiten bekannter Brechungsquotienten eingebettet und so bestimmt. Wenn jedoch aus Kristallen, Mineralen, Gesteinen oder technischen Produkten Dünnschliffe hergestellt werden, welche zwischen 20 bis 30 μm (Mikrometer) dünn sind, kann mit Hilfe der Polarisationsmikroskopie, das heisst unter Verwendung von polarisiertem Licht die optischen Eigenschaften der Kristalle bestimmt werden.

Polarisationsmikroskop mit Dünnschliff  Polarisationsmikroskop

v.l.n.r.: Polarisationsmikroskop mit Dünnschliffpräparat, Polarisationsmikroskop, 

Gemessen werden dabei fast ausschliesslich vektorielle Grössen wie Lichtbrechung, Reflexion, Absorption, Pleochroismus. Da die optischen Eigenschaften der Kristalle in einem engen Zusammenhang mit ihrem strukturellen Aufbau stehen, lassen sich aus polarisationsoptischen Messungen kristallographische Zuordnungen ableiten.

In vielen Fällen ersetzt die polarisationsmikroskopische Untersuchung teure und zeitraubende chemische Analysen, ganz abgesehen von dem Vorteil, dass es sich um eine meist direkte und zerstörungsfreie Methode handelt.

In den beiden Fotos sehen wir links im polarisierten Durchlicht die Mineralgemeinschaft Granat (gräulich), Biotit-Glimmer (rotbraun) und Feldspat und Quarz (hell); rechts bei gekreuzten Polfiltern Granat (schwarz), Biotit (rot, orange, grün), Feldspat und Quarz (Graufärbung hell bis dunkel).

Granat Glimmerschiefer Granat Glimmerschiefer mit Polarisationsfilter

v.l.n.r.: Dünnschliff eines Granat-Glimmerschiefers unter dem Mikroskop bei linear polarisiertem Licht (entspricht normaler Durchlichtmikroskopie); gleicher Dünnschliffbildausschnitt bei gekreuzten Polarisatoren.

Andere Anwendungsgebiete sind z. B. Texturuntersuchungen von Flüssigkristallen, Untersuchung des Kristallwachstums, Visualisierung von mechanischen Spannungen über die Spannungsdoppelbrechung.

 

Kommentar schreiben/lesen

Apr26

Grünsteingürtel haben, wie ihr Name verrät, einen grünlichen Farbton, den sie dem metamorphen Chlorit, Aktinolith und anderen grünen Amphibolen verdanken. Es sind Muttergesteine vieler wichtiger Lagerstätten von Gold, Silber, PGE, Nickel, Kupfer, Blei, Chrom, Zink, Eisen und weiteren seltenen Metallen, z.B. dem Schwermetall Indium.

Barberton Grünsteingürtel, © Danielle Zentner

Barberton (SA) Grünsteingürtel, © Danielle Zentner

Grünsteingürtel (engl. greenstone belt) sind typischerweise 100 bis einige tausend Kilometer lang. Es sind Zonen unterschiedlich metamorphervulkanischer Gesteine, die zusammen mit Sedimentgesteinen in archaischen und proterozoischen Kratonen zwischen Granit- und Gneis-Komplexen auftreten, siehe untere Grafik links. Grünsteingürtel sind während der ganzen Erdgeschichte entstanden. Hier betrachten wir nur die Ältesten! Sie werden als zusammenhängende stratigraphische Gruppe betrachtet. Der Anteil ultramafischer und basischer Gesteine – sei es als Layered Intrusion oder als Komatiit –  ist in den archaischen Grünsteingürteln sehr hoch.

Barberton Grünsteingürtel Greenstone belts in Simbabwe

Grünsteingürtel in Südafrika links und rechts in Simbabwe

Bekannte Grünsteingürtel in Afrika:

  • Barberton (Südafrika), der bekannteste und best untersuchteste Grünsteingürtel der Welt!
  • Pietersberg (Südafrika)
  • Gwanda (Simbabwe)
  • Lake Victoria (Ostafrika)
  • Boromo-Goren (Westafrika)

Die archaische Kruste

Die archaische Kruste besteht im wesentlichen aus niedrig metamorphem Granit-Grünsteingürtel und hochgradig metamorphem Granulit-Terran.

Barberton Grünsteingürtel - Kissen Lava, © Eugene Grosch  Komatiite Lava, South Africa, ©CSIRO

Barberton Grünsteingürtel: Kissen Lava mit einem Rand aus Glas, was auf Kontakt mit Wasser hinweist, © Eugene Grosch; Komatiite, Südafrika, ©CSIRO

Typisch sind basaltische Laven (z.B. Kissen-Laven), die vor 3.5 Milliarden Jahren auf dem ehemaligen Ozeanboden ausbrachen und die aus dem Erdmantel stammenden, ultramafisch vulkanischen Komatiite.

Es sind die Komatiite, die sehr viel über das Archaikum verraten.

Komatiite entstanden nur während des Archaikums, was darauf zurückgeführt wird, dass der Erdmantel langsam abkühlte und aufgrund der höheren Häufigkeit radioaktiver Elemente im frühen Erdmantel von 4,5 bis 2,6 Milliarden Jahre um bis zu 500 °C heisser war als heute. Komatiite besitzen sehr niedrige SiO2-, K2O- und Al2O3-Gehalte, aber einen hohen bis sehr hohen Anteil an MgO.

Komatiitische Lava besass bei der Eruption Eigenschaften eines überkritischen Fluids, nämlich die Viskosität eines Gases, aber die Dichte eines Gesteins. Im Vergleich zu dem Basaltlaven von Hawaii, die mit einer Temperatur von ~1200 °C und der Zähigkeit von Sirup oder Honig austreten, flossen sie mit grosser Geschwindigkeit über die Oberfläche und haben extrem dünne, bis 10 mm dicke Lavaschichten hinterlassen.

Die Thematik findet ihre Fortsetzung. Schöne Woche!

 

Kommentar schreiben/lesen

Apr19

Gravitationsdifferentiation nennt sich der Prozess, der dem Bushveld-Komplex, dem Great Dyke und anderen Layered Intrusions zu Anreicherung von Edelmetallen (Platin/PGE, Gold, Silber, Chrom, Nickel, Zinn) verhalf. Er beruht auf Akkumulierung von Mineralen, die während einer fraktionierten Kristallisation aus einem Magma/Schmelze entstehen. In der Grafik sehen wir schematisch eine solche Kristallisationsabfolge.

Das Prinzip der Fraktionierung, © 1999 John Wiley & Sons. Inc.

Das Prinzip der Fraktionierung, © 1999 John Wiley & Sons. Inc.

Je nach Mineral, welches entsteht, spricht man von diskontinuierlicher oder kontinuierlicher Kristallisation. Wenn im Laufe der Kristallisation eine Abfolge verschiedener Minerale entstehen, wie links in obiger Grafik, spricht man von diskontinuierlicher Kristallisation. Anders bei der kontinuierlichen Kristallisation, obige Grafik rechts, und typisch für die Ca-Na Feldspatreihe. Hier reagiert das Mineral kontinuierlich mit der Schmelze und weist – weil die Prozesse nicht vollständig ablaufen – eine chemische Zonierung auf.

Zonierter Plagioklas aus der Ca-Na Feldspatmischreihe

Zonierter Plagioklas aus der Ca-Na Feldspatmischreihe

Die Gravitationsdifferentiation

Bereits im schmelzflüssigen Zustand trennen sich häufig schon die unmischbaren sulfidischen und oxidischen Komponenten von der Schmelze, wie bei einer Salatsauce Öl und Essig. Häufiger ist jedoch die Trennung von frühzeitig auskristallisierten Mineralen. Da die Kristalle üblicherweise schwerer sind als die koexistierende Schmelze, können sie unter dem eigenen spezifischen Gewicht auf den Boden der Magmakammer sinken und bewirken dadurch eine Änderung der chemischen Zusammensetzung der Restschmelze.

Das Prinzip der Gravitationskristallisation, © Woudloper, Creative Commons

Das Prinzip der Gravitationskristallisation: die fraktionierte Kristallisation beginnt mit Abkühlung eines Magmas und akkumuliert das Kristallisat auf dem Magmakammerboden. Kristallisationsabfolge: 1: Olivin –> 2: Olivin und Pyroxen –> 3: Pyroxen und Plagioklas –> 4: Plagioklas. © Woudloper, Creative Commons

Die fraktionierte Kristallisation

Die magmatische Differentiation durch fraktionierte Kristallisation ist eine Folge davon, dass Magmen Mehrstoffsysteme sind, deren einzelne Komponenten verschiedene Schmelzpunkte besitzen. Die Grafik zeigt das Prinzip der fraktionierten Kristallisation eines Zweistoffsystems.

Schmelzdiagramm eines Zweistoffsystems

Ein Beispiel des Schmelzdiagramms eines binären Systems: 1. Schmelze I –> 2. Kristallart A und Schmelze II; 3. Kristallart B und Schmelze III; 4. Einsprenglinge A und 5. Einsprenglinge B.

Beim Abkühlen eines Magmas kristallisiert zuerst die Komponente mit dem höchsten Schmelzpunkt aus und sinkt wegen der höheren Dichte nach unten. Aus der restlichen Teilschmelze kristallisiert unter fortschreitender Abkühlen immer jene Komponente mit dem nächst höheren Schmelzpunkt aus und sinkt ihrerseits nach unten. So ändert sich der Chemismus der Schmelze von basisch (Mg-reich) nach sauer (SiO2-reich).

Natürlich ist die Natur kein Zweistoffsystem, lässt sich aber streckenweise auf wenige Komponenten reduzieren und erlaubt so eine Vereinfachung eines recht komplexen Systems.

Das Prinzip der fraktionierten Kristallisation lässt sich auf alle magmatischen Gesteine anwenden auch auf die Vulkanologie, wo noch eine Gasphase dazu kommt :-)!

1 Kommentar »



Die Lösung

Archiv