Dez12

Es fängt mit Wasserdampf an, der in der Luft vorhanden sein muss. Sinkt die Temperatur, wird Wasserdampf an kleinen Staubteilchen kondensiert und Wassertröpfchen bilden sich, die ab -10°C zu gefrieren beginnen.

Sechseckiger Schneekristall @ gemeinfrei

Sechseckiger Schneekristall @ gemeinfrei

Die Grundform des Schneekristalls ist ein sechseckiger plattiger Eiskristall, bedingt durch die sechseckige Kristallgitter-Struktur der Wassermoleküle. Auf dem Weg zur Erde wachsen die Kristalle, denn Temperatur, Windverhältnisse und Luftfeuchtigkeit ändern sich. Das bedeutet, dass keine Schneeflocke der anderen gleicht. Von Temperatur und Luftfeuchtigkeit hängt auch die Flockengrösse ab. Über -5°C und erhöhter Luftfeuchtigkeit entstehen grosse Flocken, unter -5°C in trockener Luft fällt der Schnee häufig als Eisnadel und Eisplättchen. Dies trifft vor allem für die Polregionen der Erde zu.

Fallen Schneekristalle auf den Boden und häufen sich zu einer Schneedecke an, entsteht ein komplexes Material. Anfangs noch pulverartig, wachsen die Kristalle zusammen und bilden eine lockere Struktur, die sich laufend verändert.

Die wichtigsten Eigenschaften sind Dichte, Temperatur, Feuchtigkeit und Schneehärte. Und alle Schneeeigenschaften hängen von der Temperatur, der Dichte und der Belastungsgeschwindigkeit ab.

Schnee, ein visko-elasto-plastisches Material

Zusätzlich zur temperaturgetriebenen Dynamik ist die Schneedecke ständig der Schwerkraft ausgesetzt, was zu einer Verformung der Struktur führt. Je kälter und dichter, desto viskoser oder zähflüssiger ist der Schnee. Und je nachdem wie schnell der Schnee verformt wird, reagiert er unterschiedlich. Schnee verhält sich bei langsamer Belastung ähnlich wie dickflüssiger Honig: er ist dehnbar und verformbar. Bei kleiner Dehnungsgeschwindigkeit erfolgt also eine plastische Verformung, bei hoher Dehnungsgeschwindigkeit ist das Verhalten elastisch bis spröd. Bis anhin wurden zur Erklärung Mechanismen wie z. B. Kriechen bzw. Korngrenzengleiten herangezogen. Neuste Untersuchungen am SLF zeigen, dass sich die Deformation von Schnee durch die Mikrostruktur und die mechanischen Eigenschaften seines Bauelements Eis erklären lässt.

 Bei langsamer Verformung verhält sich Schnee wie eine zähe Flüssigkeit.

Bei langsamer Verformung verhält sich Schnee wie eine zähe Flüssigkeit.

Vor allem lockerer Neuschnee ist ein sehr poröses, zusammendrückbares Material. Seine Kompressibilität hängt in erster Linie von der Dichte, aber auch von Temperatur, Schneeart und Feuchtigkeit ab. Mit zunehmender Grösse der Bindungen und mit zunehmender Kälte wird der Schnee härter, und die Festigkeit des Schnees nimmt mit der Dichte zu.

In einem als Sinterung bezeichneten Prozess verdichten sich die Kristalle weiter und die Poren werden aufgefüllt, so dass die Luftdurchlässigkeit abnimmt. Bei der Sinterung spielen im Eiskristall Gleitvorgänge und Rekristallisation eine wichtige Rolle, bei der das Kristallgefüge durch Umformung neu strukturiert wird.

Diese durch Druck und Temperaturunterschiede ausgelösten Umwandlungsprozesse finden bereits im Inneren der Neuschneedecke statt: Die destruktive (abbauende) Metamorphose beseitigt durch Schmelzen und Verdunsten komplizierte, verzweigte Kristallstrukturen und wandelt die Schneeflocken-Kristalle zu Eiskörnern um.

Neben der Temperatur spielt auch der Druck eine entscheidende Rolle, denn erhöhter Druck führt zum Schmelzen des Schnees, geringerer Druck zum Wiedergefrieren des Schmelzwassers.

Kommentar schreiben/lesen

Jun20

Joseph Kirschvink stellte 1992 die Hypothese der “Schneeball Erde” auf und postulierte, dass die damalige Erde vom Weltall aus – wegen der geschlossenen Eisdecke über den Meeren und den Kontinenten – wie ein gigantischer Schneeball ausgesehen haben könnte.

Illustration der "Schneeball Erde" vor mehr als 700 Millionen Jahren. Credit: NASA

Illustration der “Schneeball Erde” vor mehr als 700 Millionen Jahren. Credit: NASA

Ob die Erde einst komplett vereist war oder nicht, wird unter Forschern kontrovers diskutiert. Mindestens vier Vereisungen im späten Proterozoikum vor 750 bis 580 Millionen Jahren lassen sich in fast allen Gegenden der Erde nachweisen. Eine Gesamtvereisung der Erde wird für zwei Eiszeiten, die Sturtische vor 715 bis 680 Millionen Jahren und die Marinoische vor 660 bis 635 Millionen Jahren, vermutet. Auch eine noch frühere Vereisungen, die Huronische vor etwa 2,3 bis 2,2 Milliarden Jahren, ist nachgewiesen.

Schneeballerde

Die Ursache der Vereisungen wird im Auseinanderbrechen des Superkontinents Rodinia vermutet. Niederschläge setzte in Gegenden ein, die vorher, wegen der Grösse des Superkontinents, trocken und wüstenähnlich waren. Und so setzte neben der physikalischen Verwitterung wieder die chemische ein. Das im Regenwasser gelöste atmosphärische Kohlendioxid ermöglichte die Kohlensäureverwitterung. Weil so Treibhausgase aus der Atmosphäre entfernt werden, konnten die Temperaturen sinken, was eine erdweite Vergletscherung ausgelöst haben soll.

Weitere Vermutungen sehen den Auslöser der Sturtischen Eiszeit in den Franklin-Flutbasalten im heutigen Kanada, welches sich damals am Äquator befand. Die Laven, die sich ihren Weg durch sulfatische Evaporitgesteine bahnten, setzten ungeahnte Mengen an Schwefelgasen (SO2, H2S) frei, die in die Stratosphäre aufstiegen, dort Aerosole bildeten und das Sonnenlicht reflektierten. Der Rückzug des Eises wird auf Kohlenstoffdioxid zurückgeführt, das durch Vulkanismus in die Atmosphäre entwich.

Als Folge dieser Eiszeiten sollen sich mehrzellige Lebewesen (Metazoen) entwickelt haben, die sich nach dem Ende der Eiszeit im Ediacarium (vor 630 bis 542 Millionen Jahren) explosionsartig verbreiteten (Ediacara-Fauna) → Das älteste Ökosystem der Erde.

Eine Erklärung – auch zur Klarstellung der bestehenden Diskrepanzen – liefert die sogenannte Wilsonbreen-Formation im Nordosten Spitzbergens, das ja zu jener Zeit auch am Äquator lag, wo Schnee fiel und es Gletscher gab. Diese Gesteinsschichten enthalten detaillierte Informationen über die Umweltveränderungen am Ende der Sturtischen Eiszeit. So stellten die Forscher fest, dass in der 180 Meter dicken Gesteinsabfolge verschiedene Schichten vorliegen, die unter unterschiedlichen Bedingungen entstanden sind. Sie schliessen auf drei Zyklen von Gletschervorstössen und Rückzügen, die im Zeitraum von nur 100’000 Jahren abliefen. Das Ende der Vereisung war also kein einfaches Umschalten vom Eishaus zum Treibhaus. Stattdessen änderte sich das Klima zyklisch. Triebkraft dafür waren nicht primär erhöhte Kohlendioxidwerte der Atmosphäre, sondern vielmehr Schwankungen der Erdachse, die sogenannten Milankovic-Zyklen.

→ Snowball Earth

Kommentar schreiben/lesen

Jan24

Griechische Astronomen stellten fest, dass hoch über dem letzten Norden ein Sternbild schimmerte: Das Sternbild des Bären, griechisch arktos. Das Land im hohen Norden unter dem Sternbild des Bären wurde deshalb Arktis genannt. Nach griechischer Auffassung musste auf der südlichen Halbkugel aus Gründen der Symmetrie ein Gegensternbild flimmern, ein Ant-arktosebenfalls über Eis und Schnee.

Antarktis_lizenzfrei

Antarktis

Seit der Zeit des Aristoteles haben die Menschen eine vage Vorstellung von der Antarktis. Sie ist eine mächtige, sagenhafte Phantasiewelt, unnahbar und geheimnisvoll und regte die Einbildungskraft der Menschen übermässig an.

Auf den ältesten Landkarten der südlichen Hemisphäre, die von Orontius und Mercator im 16. Jahrhundert angefertigt wurden, wird das Vorhandensein eines grossen Südkontinents – Terra Australis Incognita – postuliert, wenn auch eine solche Landmasse nie gesichtet worden war. Tatsächlich war der südliche Ozean bis zum Jahr 1700 von keinem Schiff befahren worden. James Cook’s Entdeckungsfahrten im achtzehnten Jahrhundert, die ersten, bei welchen der südliche Polarkreis überquert wurde, beendeten für immer den Traum von einem reichen südlichen Gebiet mit gemässigtem Klima, das von mythologischen Geschöpfen und Völkern bewohnt wird. Seine Berichte über die reiche Fauna im südlichen Eismeer führte zur Entwicklung der Robben- und Walfangindustrie und dadurch zu den darauffolgenden Erkenntnissen über die Verletzlichkeit der Umwelt unseres Planeten, durch die die Wissenschaft im zwanzigsten Jahrhundert so viel lernte.

Wie enstand die Antarktis?

Die Antarktis war nicht immer ein vereister Kontinent – vor 70 Millionen Jahren war das Klima wahrscheinlich subtropisch, das Land von Wäldern bedeckt und von Tieren bevölkert. Heute wird angenommen, dass Antarktika den Kern des Superkontinenten Gondwana bildete, der Südamerika, Australasia, Ozeanien und Indien einschloss.

Das Auseinanderbrechen von Gondwana:

Vor 280 Millionen Jahren: Die Antarktis war Teil von Gondwanaland. Der Superkontinent begann nach Norden zu wandern.
Vor 140 Millionen Jahren:  Von Gondwanaland trennten sich Südamerika und Afrika und der Südatlantik begann sich zu öffnen.
Vor 60 Millionen Jahre: Nun beginnen sich Australien und Antarktika langsam zu trennen.

Ein unerwartetes Resultat lieferte die jüngste Reise des Forschungsschiffes Glomar Challenger, mit der die Verbindung der Antarktis zu Südamerika, die Wanderung des Kontinents und die Frühentwicklung des Südatlantiks erforscht werden sollte. Am Rande der Antarktis fand man ein Bruchstück eines versunkenen Kontinents, das vor 150 Millionen Jahren zur heutigen Südostküste Südafrikas hinpasste. Damit fand man das “Stück” der noch bestehenden Lücke in der Rekonstruktion des Superkontinents.

 

Kommentar schreiben/lesen

Jan17

Das Ausmass des Abschmelzens eines Gletschers kann nicht direkt mit steigenden Temperaturen in Beziehung gesetzt werden. Es kann sich bei höheren Temperaturen bis zu einem bestimmten Grad sogar besser Gletschereis bilden als in extrem kalten Gegenden, wie wir aus dem letzten Beitrag wissen.

Gletscher wachsen und schmelzen

Für die Entwicklung eines Gletschers, d. h. ob er wächst, schmilzt oder gleich bleibt, sind nebst Hangneigung und Bodenbeschaffenheit vor allem die Niederschlagsmengen wichtig. Damit ein Gletscher entsteht und wächst, muss mehr Schnee fallen als abschmilzt, verdunstet oder vom Wind abgetragen wird. Man spricht deswegen vom Massenhaushalt eines Gletschers.

Für die positive Massenbilanz, bei welcher der Gletscher mindestens seine Grösse hält, ist vor allem die Witterung in der Abschmelzperiode wichtig. In der Regel führen kühle und niederschlagsreiche Sommer zu einem Massenzuwachs.

Ein Gletscher verliert an Masse

Gletscher schmelzen nicht nur durch äussere Einwirkung bei Sonnen- bzw. Wärmeeinstrahlung, sondern auch durch innere Kräfte, nämlich durch die Last und den Druck der Eismassen, die den Schmelzpunkt des Eises am Gletscherfuss verringern. So fliesst denn Schmelzwasser nicht nur an der Oberfläche ab, sondern auch subglazial unter dem Gletscher hindurch bis zur Gletscherzunge.

Gletscher beim Kalben © http://www.gletscher-info.de

Ein Gletscher beim Kalben

Auch beim sogenannten Kalben eines Gletschers, der ins Meer mündet und bei dem Brocken abbrechen, die als Eisberge im Meer treiben, verringert sich die Masse. Besonders gefährdet sind Gletscher auf Hochplateaus, wo der Wind so viel Schnee wegfegt und sich nur schlecht Schnee ansammeln kann aus dem Gletschereis entstehen würde.
Wenn durch diese Verluste die Massenbilanz dauerhaft negativ ist, kann von einer Gletscherschmelze, bzw. Abschmelzen eines Gletschers gesprochen werden.

Gletscherschmelze durch Russ und Staub

Gletscher reflektieren normalerweise fast 90 % des Sonnenlichts. Verschmutzte Gletscher hingegen absorbieren die Sonnenstrahlung, d. h. sie nehmen Sonnenenergie auf, die in Wärme umgewandelt wird. Die Verschmutzung des Gletschereises entsteht durch Russ und Staub, also mit all dem, was Industrie oder Privathaushalte verfeuern und so fördert verunreinigtes Eis die Gletscherschmelze deutlich.

Reflektion bei verschmutztem Eis

Im Himalaya beispielsweise scheinen einige Gletscher zu wachsen, andere schmelzen dramatisch ab. So soll die Russ-Konzentration im Eis des Mount Everest im Jahr 2000 dreimal so hoch sein wie vor 1975. Die wachsenden Gletscher des Karakorums hingegen werden vom Schutt vor Sonneneinstrahlung geschützt.

Ob ein Gletscher schmilzt oder wächst, hängt also von einem sehr komplexen Zusammenspiel verschiedenster Faktoren ab: (Sommer-)Witterung, Hangneigung, Umgebungs- und Bodenbeschaffenheit, Russ, Schutt, Sonneneinstrahlung, Windstärke und Windrichtung, Lufttemperatur, Luftfeuchtigkeit, schneeiger und nicht-schneeiger Niederschlag, Höhenlage der Schneegrenze. Alle diese Faktoren wirken auf die Massenbilanz eines Gletschers.

Kommentar schreiben/lesen

Jan10

Gletscher haben mit ihrer Kraft die Landschaften unseres Planeten mitgestaltet. Sie sind für viele Täler, Seen und Hügel verantwortlich und sind gigantische Süsswasserspeicher.

Santa Cruz-Perito Moreno Gletscher; © Mariano Cecowski, CC BY-SA 3.0

Der Perito Moreno Gletscher in Argentinien; © Mariano Cecowski, CC BY-SA 3.0

Wie Gletscher entstehen

Gletscher entstehen dann, wenn mehr Schnee fällt als verdunstet oder abtaut. Es sind keine besonders kalten Winter erforderlich, denn bei mildem Frost kann die Luft mehr Wasserdampf enthalten und daher stärkere Schneefälle als bei tieferen Temperaturen hervorbringen. Die Quantität des Schneeüberschusses ist weniger wichtig als die Qualität, sie entscheidet lediglich wie schnell sich der Gletscher entwickelt. Fallen auf den bereits vorhandenen Schnee weitere Niederschläge, werden die unteren Schneeschichten durch Metamorphose immer weiter zusammengedrückt.

Gletscher Entstehung

Entstehung von Eis

Die Metamorphose des Schnees zu Gletschereis vollzieht sich in mehreren Stadien. Beim frisch gefallenen Schnee schmelzen als erstes die Spitzen der sternförmigen Kristalle, wodurch der Schnee körnig wird. Hierbei wird die Schneemasse dichter und gleichzeitig fester. Der Druck des sich auflagernden Neuschnees trägt zur Verwandlung bei. Wenn dieser Vorgang mehrere Jahre angehalten hat, verfestigt sich dieser körnige Schnee zu Firn. Durch den Druck der darüber liegenden jüngeren Schneemassen kristallisieren sich die Firnkörner zu einem festen Gefüge von Gletschereis.  Ab einer bestimmten Mächtigkeit beginnt der Gletscher durch seine Schwerkraft zu fliessen.

Unterschiedliche Phasen der Vergletscherung

Immer wieder gab es Phasen im Laufe der Erdgeschichte, in denen das globale Klima für eine gewisse Dauer verhältnismässig kalt oder warm war. Die Eiszeiten sind im Vergleich zu den Warmzeiten kurz. Es gab, je nach Definition, etwa vier bis sieben Eiszeitalter, die das Bild der Erde prägten.

Eiszeitalter sind Zeitabschnitte der Erdgeschichte, in denen mindestens ein Pol der Erde vergletschert ist, oder wenn in der nördlichen und südlichen Hemisphäre ausgedehnte Vergletscherungen vorherrschen.

Nach der ersten Definition befindet sich die Erde seit etwa 30 Millionen Jahren im aktuellen Känozoischen Eiszeitalter, da seit dieser Zeit die Antarktis vergletschert ist. Nach der zweiten, engeren Definition begann die derzeitige, bis heute andauernde Eiszeit erst vor etwa 2’7 Millionen Jahren, als auch die Arktis vergletscherte. Sie entspräche damit annähernd dem geologischen Zeitabschnitt Quartär.

Eine gewaltige Eiszeit beherrschte die Erde vor rund 2’3 Milliarden Jahren im Paläoproterozoikum. Später, vor circa 250 Millionen Jahren im Paläozoikum, kam es wieder zu einer starken weltweiten Vergletscherung und die letzte Eiszeit des Känozoikums hält immer noch an.

Klima im Lauf der Erdgeschichte; © Wikimedia

Klima im Lauf der Erdgeschichte; © Wikimedia

Eine Eiszeit wird zwar als Kaltzeit bezeichnet, unterliegt aber dennoch klimatischen Schwankungen: Man unterscheidet kalte Perioden, die sogenannten Glaziale und warme Perioden, die Interglaziale. Die genauen Ursachen von Eiszeiten ist noch nicht geklärt. Sicher erscheint jedoch, dass dabei die Position und Entfernung der Erde auf ihrer Umlaufbahn um die Sonne eine grosse Rolle spielen und die Sonnenaktivität. Als irdische Ursachen werden das Öffnen oder Schliessen von Meeresstrassen, die Bildung von Hochgebirgen und Vulkantätigkeiten angenommen.

Astronaut photo of ash cloud from Mount Cleveland, Alaska, USA; © gemeinfrei

Astronautenfoto einer Aschewolke am Mount Cleveland, Alaska, USA; © NASA, gemeinfrei

Kommentar schreiben/lesen

Mai17

Toteis und Toteissee

Toteis und Toteisseen

Ein Toteissee ist ein See, dessen Becken durch das Abschmelzen von Toteisblöcken entstand. Die Form und Grösse von Toteisseen ist von den Ausmassen des mittlerweile abgeschmolzenen Toteisblockes abhängig und so variieren diese Seen in ihrer Grösse und Ausdehnung von einigen tausend Quadratmetern bis mehrere Quadratkilometer. In jung vergletscherten Gebieten, in Moränenlandschaften, auf Sandern (Schotterebenen) oder in Urstromtälern sind Toteisseen eine weit verbreitete Erscheinung. Oft sind Toteisseen, vor allem die kleineren und flacheren, schon vollständig verlandet.

Schwimmende Inseln im Barchetsee (TG) einem ehemaligen Toteissee

Schwimmende Inseln im Barchetsee (TG) einem ehemaligen Toteissee

Die Stirnmoränen des Rhein- und Thurgletschers stauten nach der letzten Eiszeit vor etwa 15’000 bis 20’000 Jahren das Schmelzwasser beim Abfliessen nach W oder NW. Es bildeten sich Toteisseen. Der Barchetsee ist ein solcher. Heute zeigt er sich als warmer Moorsee mit schwimmenden Inseln.

Wie kam der See zu seinem Namen?

Barchet oder Barchent ist aufgerauter Stoff, wie es die einen oder anderen noch von Grossmutters Bettwäsche kennen. Hergestellt wurde er aus den Fasern von Hanfstengeln. Diese legte man zuerst ins Wasser, bis sie zu faulen begannen (Mazeration).

Hanfbündel im See © www.nvvn.ch

Hanfbündel im See © www.nvvn.ch

Damit man leichter zum Wasser kam, stach man Buchten oder Löcher (Roosse) vom Schwingrasen heraus und schob das Zeug in den See hinaus. So entstanden die heutigen schwimmenden Inseln im Barchetsee.

Schwimmende Inseln

In der Schweiz gibt es neben dem Barchetsee nur noch den Lützelsee in Hombrechtikon, der schwimmende Inseln besitzt.

Schwimmende Inseln Lützelsee, Hombrechtikon, © Paul Müller

Schwimmende Inseln, © Paul Müller

Schwimmende Inseln, © www.nvvn.ch

Schwimmende Inseln, © www.nvvn.ch

Je nach Windrichtung werden die Inseln über den See getrieben. Vor 30 Jahren konnte man sie noch betreten und als Flosse benutzen. Heute sind alle komplett mit der Sumpfschneide (Schilfpflanze aus dem Torf entsteht) überwachsen.

Einige Wandervorschläge für die kommenden schönen Tag:

>> Wanderroute Barchetsee
>> Wanderroute Lützelsee
>> Barchetsee aus der Vogelperspektive

Kommentar schreiben/lesen

Jan12
Der Gletscher Tête Rousse auf französischer Seite des Mont Blanc Massivs, ©catnat.net

Der Gletscher Tête Rousse auf französischer Seite des Mont Blanc Massivs, ©catnat.net

Wenn tiefere Schichten eines Gletschers aus wasserdichtem, kälterem Eis bestehen, sammelt sich Schmelzwasser in einem Reservoir, anstatt über die Gletscherzunge abzufliessen. Solche Wasserreservoire unter Gletschern sind hauptsächlich aus Island bekannt. Das Phänomen von Schmelzwasserseen im Innern von Gletschern ist so gut wie unerforscht und kann, wie am Beispiel des Gletschers Tête Rousse auf französischer Seite des Mont Blanc Massivs verheerende Folgen haben. Der unterirdische See platzte schon einmal aus dem Gletscher. 1892 wurde ein ganzes Dorf überflutet, weswegen heute regelmässig Entlastungsbohrungen zur Senkung des Wasserdrucks im Inneren durchgeführt werden.

Krater am unteren Ende des Gletschers, entstanden nach dem Aufbrechen des Gletschersees ; historische Fotografie von H. Pelloux, 1892

Krater am unteren Ende des Gletschers, entstanden nach dem Aufbrechen des Gletschersees ; historische Fotografie von H. Pelloux, 1892

Hinweise auf ein Wasserreservoir unter dem Gletscher auf französischer Seite des Mont Blanc lieferten Radarmessungen am Tête Rousse im Jahr 2008. Mit einem Sonargerät beschossen die Forscher den Gletscher mit Schallwellen. Das Echo verriet, wo Hohlräume sein könnten. Zudem erforschten sie den Gletscher mit Magnetresonanz-Geräten. Das funktioniert ähnlich wie die Untersuchung eines Menschen in einem MRT (Magnetresonanztomograph), der ein dreidimensionales Röntgen-Bild liefert. Heute kennen die Forscher die ungefähre Form der Wasserblase und das Volumen. Bei Entlastungsbohrungen im Jahr 2010 sprudelte aus einigen Bohrlöchern direkt Wasser empor, was ein Hinweise für den hohen Innendruck in der Kammer ist.

Längsschnitt der Gletscherzunge; Skizze Vallot et al. 1892 & Vincent et al. 2010.

Längsschnitt der Gletscherzunge; Skizze Vallot et al. 1892 & Vincent et al. 2010

Unter dem Eispanzer ruhen 65 000 Kubikmeter Wasser. Was passieren kann, wenn der Eispanzer bricht und eine Felsbrocken und Bäume mitreisende Flut zu Tal rast, ist in den Annalen des Ortes Saint-Gervais seit 1892 verzeichnet. Ein Dok-Film berichtet.

>> Dok-Film
>> Abstieg ins Wasserreservoir des Tête Rousse Gletschers

Kommentar schreiben/lesen



Die Lösung

Archiv