Jun26

Mikroben bilden Lagerstätten

Die Lehrmeinung ging bis heute davon aus, dass beispielsweise Uranlagerstätten in Sandsteinen hauptsächlich aus einer kristallinen Form von Uran mit der Wertigkeit IV besteht. Demnach sorgten abiotische, chemische Reaktionen des Gesteins in wässriger Umgebung dafür, dass sich das Uran als kristalline Minerale ablagerte, beispielsweise als Uraninit, UO(Pechblende).

Sandsteingebundene Uran-Lagerstätten findet man in mittel- bis grobkörnigen Sandsteinen in kontinental fluvialer oder marin-sedimentärer Umgebung. Solche Uran-Lagerstätten gibt es weltweit; sie umspannen eine grosse Bandbreite geologischer Zeitalter und machen ca. 18% der weltweiten Uran-Reserven aus. Zu den wichtigsten Lagerstätten-Provinzen gehören das Wyoming-Becken und der Grants District in New Mexico in den USA, Lagerstätten in Zentraleuropa und Kasachstan, sehr potentielle Vorkommen in Australien, der Mongolei, Südamerika und in Afrika.

Uraninit: Chestnut Flats Mine, Spruce Pine, Mitchell County, North Carolina © Rob Lavinsky, iRocks.com – CC-BY-SA-3.0

Uraninit: Chestnut Flats Mine, Spruce Pine, Mitchell County, North Carolina © Rob Lavinsky, iRocks.com – CC-BY-SA-3.0

An der Colorado State University wurden nun Kernproben aus einer sandsteingebundenen Uran-Lagerstätte in Wyoming untersucht. Dabei zeigte sich, dass Uran-IV nicht kristallin, jedoch an organisches Material gebunden, vorhanden ist. Zudem ergab die Analyse des Isotopenverhältnisses, dass dieses Uran durch enzymatische Reduktion gebildet worden war. Man fand DNA-Beweise für Uran-reduzierende Bakterien, darunter Geobacter und Pseudomonas, von denen bereits bekannt ist, dass sie Schwermetalle wie Uran reduzieren und so ihre Energie gewinnen. Ob sie zur Zeit der Entstehung der Lagerstätte an der Bildung der organischen Uranverbindungen mitwirkten oder andere, ähnliche Bakterienarten, bleibt vorerst noch ungeklärt.

Aktuelle Forschungen liefern immer mehr Hinweise, dass Mikroben häufiger an der Entstehung von Erzvorkommen beteiligt sind als lange angenommen. Denn auch für Goldlagerstätten postulieren Forscher inzwischen eine mikrobielle Mithilfe.

Das Bakterium C. metallidurans bildt winzig kleine Gold-Nuggets © American Society for Microbiology

Das Bakterium C. metallidurans fällt winzig kleine Gold-Nuggets aus © American Society for Microbiology

Goldnuggets zum Beispiel beherbergen Bakterien, die biochemische Tricks anwenden, um die Toxizität des Metalls zu umgehen. Mithilfe biochemischer und Genomanalysen entdeckten die Forscher eine Reihe von Genen und einen chemischen Metaboliten, die für die Ausfällung des Goldes verantwortlich waren. Es wurde auch eine Chemikalie isoliert, die das Bakterium dazu braucht, Goldpartikel auszufällen. Die Chemikalie wird Delfibactin genannt.

Die Forscher vermuten, dass die von ihnen identifizierten Gene an der Produktion von Delftibactin beteiligt sind und es ausserhalb der Zelle ableiten. Durch Fällung von Gold kann D. acidovarans das Eindringen des Metalls in seine Zellen in Lösung verhindern. Es ist auch möglich, dass Bakterien andere Mechanismen verwenden um Gold zu entgiften, das seine Zellwände durchbricht.

Kommentar schreiben/lesen

Jun19

Was auf den ersten Blick wie ein chemisch-ökologisches Inferno erscheint, ist ein Paradies für Spezialisten. Chemolithoautotrophe Bakterien lieben den Giftcocktail und fühlen sich in Bergbauhalden richtig wohl. Hier verwittert das erzhaltige Gestein und bildet hochtoxische, saure Grubenwässer mit einem hohen Metallgehalt.

Rio Tinto, Spanien: Saurer Bergbauausfluss © gemeinfrei

Rio Tinto, Spanien: Saurer Bergbauausfluss © gemeinfrei

Seit 150 Jahren wird das Verfahren der Flotation eingesetzt um Metalle zu extrahieren. Dazu wird fein gemahlenes Erzgestein mit Wasser vermischt und unter Zusatz von Chemikalien werden die Erzpartikel unterschiedlich benetzbar gemacht. Diese Brühe wird dann aufgeschäumt, so dass sich die Partikel an den Schaumblasen anlagern. Der Kupfergehalt von Roherz z. B. wird so auf etwa 30 % angereichert.

Organismen wie z. B. Thiobacillus ferrooxidans nutzen anorganische Schwefelverbindungen in Gesteinen als Nahrung, mit denen sonst kein Organismus etwas anzufangen weiss, und die zudem hoch toxisch sind.

Bei der Biolaugung oder dem Bioleaching werden unlösliche Metallsulfide biologisch in lösliche Sulfate umgewandelt, wobei das Metall danach aus der Lösung extrahiert wird. Bei der Biooxidation lösen Mikroben das Mineral auf, setzen das Metall frei und bilden Säuren.

Mikroben einzusetzen hat zwei Vorteile: Man saniert die Halde und gewinnt wertvolle Rohstoffe, denn das Metall wird den toxischen Lösungen entzogen. Und was die Ökologen am meisten fürchten, saure Bergbauwässer werden entgiftet.

Mikrobielle Extraktionsmethoden

 

Kommentar schreiben/lesen

Jun05

Einmalig, eindrücklich und unglaublich schön: Der Aletschgletscher ist der grösste Eisstrom der Alpen und eine berühmte Landschaft. Wie ein erstarrter Fluss erstreckt er sich vom Weiss der Viertausender hinunter ins Oberwallis. Der Faszination des riesigen Eisstromes, der sich von seinem Einzugsgebiet in der Jungfrauregion in 4000 m Höhe hinunterzieht bis auf die 2500 m tiefer gelegene Massaschlucht, kann man sich nicht entziehen. Besonders eindrucksvoll erlebt man das gigantische Eismeer auf einer geführten Gletschertour. Seiner Einmaligkeit wegen wurde der Aletschgletscher mit seiner Umgebung als erste Naturlandschaft des Alpenraums  2001 ins UNESCO-Welterbe aufgenommen.

Der grosse Aletschgletscher im Kanton Wallis von der Aussichtsterasse Bettmerhorn aus gesehen, © Pick83, CC BY-SA 3.0

Der grosse Aletschgletscher im Kanton Wallis von der Aussichtsterasse Bettmerhorn aus gesehen, © Pick83, CC BY-SA 3.0

Der Gletscher prägte die ansässige Bevölkerung wie kein anderes Naturelement: er war gleichsam ihre Freude und Mühsal, spendete ihnen das überlebenswichtige Wasser und bescherte ihnen tödliche Unglücke.

Den Grundstein zur hochalpinen Landschaft legen zwei besonders harte Gesteine, der quarzreiche Aaregranit und ein kristalliner Amphibolit. Der höchste Gipfel des Aletschgebietes, das 4274 m hohe Finsteraarhorn, ist aus diesem verwitterungsresistenten, grünen Amphibolitgestein gebaut.

Weniger verwitterungsresistent sind die Gneise und Glimmerschiefer. Sie wurden vor 400 – 450 Millionen Jahren während der kaledonischen Gebirgsbildung durch hohen Druck und Wärme metamorph überprägt. Aus diesen Gesteinen bestehen die Jungfrau, der Mönch und das Aletschhorn, ihr Unterbau hingegen ist harter Granit.
Im Erdmittelalter, lag das Aarmassiv unter einem tropischen Meer. Die kalkigen Sedimente bildeten kilometermächtige, fossilhaltige Schichten, die über dem kristallinen Zentralmassiv lagen. In der alpinen Gebirgsbildung wurden sie nach Norden geschoben und abgetragen. Davon zeugen am Rand des Aletschgebietes nur noch die steilen Flanken von Eiger und Wetterhorn.
Das emporgehobene Aarmassiv ist grösstenteils vergletschert. Der Aletschgletscher, der längste der Alpen, ist heute 24 km lang. Am Ende der kleinen Eiszeit um 1870 war er 2,5 km länger. Die totale Mächtigkeit des Eises wird am Konkordiaplatz auf 900 m geschätzt.
Das Schmelzwasser rauscht durch die enge Massaschlucht ins Rhonetal. Die Abflüsse schwanken extrem entsprechend der Jahreszeit. Die Entwässerung des Aletschgebietes ist manchmal problematisch, weil der Märjelensee am Rand des Gletschers während der Schmelze hoch ansteigen kann. So ist es nicht erstaunlich, dass der See mindestens 31 Mal ausbrach und das Gletschervorfeld und die Gebiete unterhalb der Massaschlucht überflutete.

Aletsch. Der grösste Gletscher der Alpen: ein grossartiger Bildband von Marco Volken. AS-Verlag, Zürich 2016
→ Ausführliche Informationen: Ausstellung Gletscherwelt Bettmerhorn und Pro Natura Zentrum Aletsch.

Kommentar schreiben/lesen

Mai22

Das «Binntälli» – so nennen die Einheimischen liebevoll ihre Heimat – zieht seit Jahrhunderten wegen seinen einzigartigen und spektakulären Mineralien Gelehrte, Forscher und Sammler aus der ganzen Welt an. Zwei im Jahr 1609 und 1714 datierte Urkunden des Gemeindearchivs bezeugen dies.

Der Schatz des Tales liegt im Berg, denn das Binntal ist eine der mineralienreichsten Regionen der Alpen.

Sphalerit oder Zinkblende aus der Lengenbach Grube im Binntal © Joan Rosell, CC BY-SA 3.0

Sphalerit oder Zinkblende aus der Lengenbach Grube im Binntal © Joan Rosell, CC BY-SA 3.0

Die Grube Lengenbach wurde im industriellen Massstab speziell für Forschung und Verkauf von seltenen Kristallen betrieben. Die Aktivität erreichte in der 2. Hälfte des 19. Jahrhunderts, mit britischen Touristen als wichtigste Kunden, ihren Höhepunkt. Vor 50 Jahren begann eine zweite Abbauphase und heute wird die Mine nur noch hobbymässig von den Mitgliedern des “Vereins Freunde Lengenbach”, (VFL) betrieben.

Besondere Sulfosalz-Mineralien in Lengenbach

Die Mine ist besonders berühmt für seine sehr seltenen Kristalle von Schwefelverbindungen mit Arsen, Blei, Thallium und Silber. So wurden hier etwa 30 Mineralien zum ersten Mal entdeckt, wovon die Hälfte nur hier vorkommt. Es sind durchwegs kleine, sehr schön ausgebildete schwarze, gelbe oder rote Kristalle, eingebettet in schneeweissem Dolomit oder Calcit.

Die Geologie ist der Schlüssel

In der Tethys entstand eine Dolomit-Schicht mit Fe-, Blei und Zink-Sulfiden. Solcherart mineralisierte Dolomite sind in den Alpen sehr häufig. Während der Alpenfaltung kamen die “Binn-Dolomite” in Kontakt mit Kupfer (Cu), Arsen (As) und anderen Mineralien-führenden Gesteinsschichten. Auf dem Weg dieser Schichten an die Oberfläche veränderten sich die Temperatur- und Druckbedingungen, es kam zu Rekristallisationen. Vor allem Arsen und Kupfer entwichen in die wasserhaltige Phase. Diese mit Kupfer und Arsen gesättigte Wasserphase erreichte die Dolomit-Schichten, und so begannen sich Metall-Arsen Sulfide zu bilden. Typische Mineralien sind Arsenopyrit (FeAsS) statt Pyrit (FeS2), Sartorite (PbS2As4) statt Bleiglanz (PbS), usw.. Im Laufe der Zeit veränderten sich die hydrothermalen Wässer in ihrer chemischen Zusammensetzung und Mineralien mit  einem kleineren Arsen zu Schwefel Verhältnis –  wie z. B. Jordanit (Pb14As6S23) – bildeten sich. Als dann der Arsengehalt in den hydrothermalen Wässern am höchsten war, entstanden Kristalle wie Realgar (As4S4) und Auripigment (As2S3). Diese bestehen nur aus Schwefel und Arsen.

So kam es zur aussergewöhnlich reichen Vielfalt an seltenen Mineralien und es erklärt auch, warum sie nur in der Grube Lengenbach im Binntal und nicht in anderen Dolomit-Aufschlüssen zu finden sind.

Forschungsgemeinschaft Lengenbach, FGL
Das Binntal

Kommentar schreiben/lesen

Mai01

Viele Leute glauben, dass Diamanten aus der Metamorphose von Kohle entstehen. Die meisten Diamanten, die datiert wurden, sind allerdings viel älter als die ersten Landpflanzen der Erde – das Ausgangsmaterial der Kohle.

Diamanten, die an oder nahe der Erdoberfläche gefunden werden, haben sich durch einen von vier möglichen Prozessen gebildet. © geology.com

Diamanten, die an oder nahe der Erdoberfläche gefunden werden, haben sich durch einen von vier möglichen Prozessen gebildet. © geology.com

Diamanten bilden sich im Erdmantel

Die Bildung natürlicher Diamanten erfordert sehr hohe Temperaturen und Drücke. Diese Bedingungen treten etwa 150 Kilometer unter der Oberfläche in begrenzten Zonen des Erdmantels auf, wo Temperaturen mindestens 1050 ºC sind. Man geht davon aus, dass die für die Diamantbildung und Diamantstabilität kritische Temperatur-Druck-Umgebung ausschliesslich unter den stabilen Kontinentalplatten vorhanden ist.

Diamanten, die in diesen Zonen gebildet und gelagert werden, kommen erst durch Vulkanausbrüchen an die Erdoberfläche, Punkt 1 in der Grafik. Diese Art von Förderung durch Vulkanausbruch scheint selten zu sein und wurde bislang noch nie direkt beobachtet.

Die Kohlenstoffquelle für Mantel-Diamanten ist Kohlenstoff, der seit der Entstehung des Planeten im Erdinneren vorhanden ist.

Diamanten bilden sich in Subduktionszonen

Winzige Diamanten wurden in Gesteinen gefunden, von denen man annimmt, dass sie durch plattentektonische Prozesse in den Erdmantel subduziert und wieder an die Oberfläche befördert wurden, Punkt 2 in der Grafik. Die Diamantbildung in einer subduzierenden Platte kann bereits 80 km unterhalb der Oberfläche und bei Temperaturen von bis zu 200 °C ablaufen. In einer Studie wurde festgestellt, dass Diamanten aus Brasilien winzige mineralische Einschlüsse enthalten, die mit der Mineralogie der ozeanischen Kruste übereinstimmen. Andere Diamanten haben Einschlüsse, die darauf hindeuten, dass subduziertes Meerwasser an ihrer Bildung beteiligt war.

Die wahrscheinlichste Kohlenstoffquelle bei Subduktion einer ozeanischen Platte sind Karbonatgesteine ​​wie Kalkstein, Marmor und Dolomit und möglicherweise Partikel von Pflanzenschutt in Offshore-Sedimenten.

Diamanten bilden sich an Impakt-Standorten

Im Laufe der Erdgeschichte kam es wiederholt zu grossen Asteroid-Einschlägen. Dabei werden extreme Temperaturen und Drücke erzeugt. Wenn z. B. ein 10 km grosser Asteroid, der mit 15 bis 20 km/Sek. fliegt, die Erde treffen würde, entstünde durch den Aufprall ein Energieausbruch, der grösser ist als die Energieausbrüche auf der Sonnenoberfläche.

Die hohen Temperatur- und Druckbedingungen eines solchen Aufpralls sind ausreichend, um Diamanten zu bilden. Diese Theorie wird durch die Entdeckung winziger Diamanten um mehrere Einschlagstellen von Asteroiden gestützt, Punkt 3 in der Grafik.

Winzige, submillimeter grosse Diamanten wurden im Meteor-Krater in Arizona gefunden und Industriediamanten mit einer Grösse bis zu 13 mm im Popigai-Krater in Nordsibirien, Russland.

Im Impaktgebiet könnte Kohle vorhanden sein und könnte als Kohlenstoffquelle der Diamanten dienen. Kalkstein, Marmor, Dolomit und andere kohlenstoffhaltige Gesteine ​​sind ebenfalls potenzielle Kohlenstoffquellen.

Diamanten bilden sich im Weltraum

NASA-Forscher haben eine grosse Anzahl von Nano-Diamanten in Meteoriten entdeckt, (Nano = Einheitenvorsatz für den milliardsten Teil). Der Anteil Diamanten in diesen Meteoriten macht etwa 3 % des gesamten vorhandenen Kohlenstoffs aus, Punkt 4 in der Grafik.

Forscher fanden auch eine grosse Anzahl sehr kleiner Diamanten in einer Probe des Allen Hills Meteorits. Man nimmt an, dass Diamanten in Meteoriten im Weltraum durch Hochgeschwindigkeits-Kollisionen entstanden sind, so wie sich Diamanten auf der Erde an Einschlagstellen bilden.

Kohle ist nicht an der Schaffung solcher Diamanten beteiligt. Die Kohlenstoffquelle stammt aus extraterrestrischer Quelle.

Ist nun Kohle an der Entstehung von Diamanten beteiligt?

Man kann festhalten, dass fast jeder terrestrische Diamant, der datiert wurde, im Präkambrium entstanden ist – in der Zeitspanne also zwischen der Entstehung der Erde vor 4’600 Mio. J. und dem Beginn des Kambriums vor 542 Mio. J.. Die frühesten Landpflanzen sind erst vor 450 Mio. J. also fast 100 Mio. J. nach der Bildung aller natürlichen Diamanten der Erde entstanden.

Kommentar schreiben/lesen

Apr17

Viele Rifttäler bzw. Grabenbrüche sind Teil einer Dreifach-Kreuzung, wo sich drei tektonische Platten in etwa 120 ° Winkeln treffen. Meistens spalten sich zwei Arme einer Dreifach-Kreuzung, um einen Ozean zu bilden, während der dritte “gescheiterte Riss” ein Grabenbruch werden kann. Nur sehr selten entsteht ein Ozean aus allen drei Armen.

Dreifach-Kreuzung © GeologyIn.com

Dreifach-Kreuzung © GeologyIn.com

Auf kontinentaler Lithosphäre sind nur wenige aktive Grabenbrüche zu finden. Der Ostafrikanische Graben zusammen mit dem Baikal-, dem Westantarktischen- und dem Rio Grande Graben sind die wichtigsten aktiven kontinentalen Rift-Täler der Erde.

Ein zur Zeit für Schlagzeilen sorgendes Beispiel ist das Ostafrikanische Rift-System, das sich im Norden von Syrien bis in den Süden nach Mosambik erstreckt.

Der Ostafrikanischer Riss

Südlich des Roten Meeres liegt der komplexe Ostafrikanische Graben, der den afrikanischen Kontinent in zwei Teile teilt. Die afrikanische Platte, manchmal die nubische Platte genannt, trägt den grössten Teil des Kontinents, während die kleinere somalische Platte das Horn von Afrika trägt.

Die beiden grossen Grabensysteme des Ostafrikanischen Rifts sind das Gregory oder Östliche Rift und das Westliche Rift. Diese Rift-Täler sind von Vulkanen übersät: Erta Ale in Äthiopien, Mount Kenya in Kenia (ein nicht mehr aktiver Stratovulkan), Ol Doinyo Lengai und der Kilimanjaro (ein schlafender Stratovulkan) in Tansania und der Nyiragongo in der Demokratischen Republik Kongo, DRK.

Die jüngsten Schlagzeilen zeigen Bilder eines Spalts, der sich auf dramatische Weise auftut und den man mit aufflackernden Aktivitäten der Grabentektonik in Verbindung bringt.

Ein Riss tut sich im Rift Valley in Kenia auf © nation.co.ke

Ein Riss tut sich im Rift Valley in Kenia auf © nation.co.ke

Da der Spalt jedoch keine Ähnlichkeit mit Verwerfungen zeigt, die durch Rift Tektonik verursacht werden, und auch keine grösseren Erdbeben registriert worden sind, wird in der Fachwelt eine andere Ursache vermutet.

Die intensiven Regenfälle sollen aus tieferliegenden Schichten Vulkanasche weggespült haben. Ähnliches habe man bereits vor Ort und an anderen Stellen auf der Welt beobachtet.

Nichts desto trotz entwickelt sich der Grabenbruch weiter: In einigen Millionen Jahren wird das östliche Afrika vermutlich vom Rest des Kontinents abgespalten sein und eine neue eigene Landmasse gebildet haben.

Kommentar schreiben/lesen

Apr10

Das Mineral Sepiolith, das man auch unter der Bezeichnung Meerschaum kennt, ist ein eher selten vorkommendes Magnesiumsilikat mit der chemischen Formel Mg2Si3O8·2H2O.

Sepiolith entsteht aus der Verwitterung von Serpentinit unter hydrothermalen Bedingungen und ist, wie z. B. die Tonminerale, ein Schichtsilikat, welches weiter der Gruppe Palygorskit-Sepiolith zugeordnet wird.

→ Beitrag: Ein Zungenbrecher – Palygorskit.

Unbearbeiteter Sepiolith oder Naturmeerschaum, Türkei © http://rlayton.net

Unbearbeiteter Sepiolith oder Naturmeerschaum, Türkei © http://rlayton.net

Eine Meerschaumpfeife, der poetische Schwärmer bezeichnet sie  als “weisse Göttin”, ist eine Pfeife für Mussestunden, die dem Pfeifenraucher höchsten Genuss verschafft.

Meerschaum-Pfeife handgeschnitzt von Sinan Atilla in seiner Istanbul Werkstatt © www.etsy.com/shop/MeerschaumBazaar

Meerschaum-Pfeife handgeschnitzt von Sinan Atilla in seiner Istanbul Werkstatt © www.etsy.com/shop/MeerschaumBazaar

Meerschaum-Arten

Der ursprüngliche Naturmeerschaum stammt aus der Türkei, wo, nahe der anatolischen Stadt Eskişehir, die besten Vorkommen in tertiären Tonerde-Lagerstätten zu finden sind. Er ist dem dichten Talk recht ähnlich. Aus den rohen Meerschaumblöcken werden vor Ort die Pfeifenköpfe produziert, die dann exportiert werden.

Eine weitere Art ist der Amboseli-Meerschaum in Tansania. Er ist einige Millionen Jahre jünger als der Türkische und hat eine graue Tönung. Der afrikanische Meerschaum ist zudem schwerer und dadurch nicht so aufnahmefähig für das beim Rauchen entstehende Kondensat.

Dann gibt es noch den Pressmeerschaum. Er entsteht aus den Resten der Blockmeerschaum-Produktion. Diese “Überbleibsel” werden gewaschen, gemahlen und mit Kalk sowie einem neutralen Bindemittel gemischt, getrocknet und unter Druck wieder zu einem Block zusammengefügt, um dann wie Naturmeerschaum verarbeitet zu werden.

Die besonderen Eigenschaften des Meerschaums

Meerschaum ist eine mineralische Substanz mit vielen kleinen Poren. Diese machen den Meerschaum für Kondensate beim Rauchen sehr aufnahmefähig, wodurch der Einsatz von Filtern unnötig wird. Weil Meerschaum zudem feuerfest ist, besteht für den Raucher einer Meerschaum-Pfeife keine Gefahr, dass sein Pfeifenkopf durchbrennt. Und der neutrale Geschmack seiner Meerschaum-Pfeife eignet sich bestens den Tabak zu beurteilen.

Eine weitere Besonderheit ist die Verfärbung des Pfeifenkopfes durch das Rauchen. Nach der Schnitzarbeit wird die Pfeife in flüssigen Bienenwachs getaucht, was zur Verfärbung des Pfeifenkopfs beim Rauchen führt. Die Farbveränderung kann von hellbeige über gelbbraun bis dunkelrot gehen.

Dass Rauchen tödlich sein kann, wusste man schon früher.

Totenkopf-Meerschaum-Pfeife © Peter Michaelis

Totenkopf-Meerschaum-Pfeife © Peter Michaelis

Ein Menschenschädel aus Meerschaum bildet den Pfeifenkopf einer aus dem 19. Jahrhundert stammenden Meerschaum-Pfeife.
→ Ruhlaer Tabakpfeifenmuseum

Kommentar schreiben/lesen



Die Lösung

Archiv